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ABSTRACT 

An a r t i f i c i a l  d i s s i p a t i o n  model, inc luding  boundary t r ea tmen t ,  t h a t  is 

employed i n  many c e n t r a l  d i f f e r e n c e  schemes f o r  so lv ing  t h e  Euler  and Navier- 

Stokes equat ions  i s  d iscussed .  Modif icat ions of t h i s  model such as t h e  eigen- 

va lue  s c a l i n g  suggested by upwind d i f f e renc ing  a r e  examined. Mul t i s t age  t i m e  

s t epp ing  schemes with and without  a mul t igr id  method are used t o  i n v e s t i g a t e  

t h e  e f f e c t s  of changes i n  t h e  d i s s i p a t i o n  model on accuracy and convergence. 

Improved accuracy f o r  I n v i s c i d  and viscous a i r f o i l  f lows is obta ined  wi th  t h e  

modified e igenvalue  sca l ing .  Slower convergence rates are experienced wi th  

t h e  multLgrid method us ing  such sca l lng .  The rate of convergence is improved 

by apply ing  a d i s s i p a t i o n  s c a l i n g  func t ion  t h a t  depends on mesh ce l l  a spec t  

r a t i o .  
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I o  INTRODUCTION 

In the past few years, substantial progress has been achieved in the 

development of efficient numerical schemes for solving the Euler and Navier- 

Stokes Robustness and accuracy of the schemes has also con- 

tinued to improve. Strong emphasis has been placed on sharp representation of 

shock waves, which is reflected in the Euler solutions obtained7-''. Now, the 

accuracy of viscous flow calculations. (i.e., turbulent flows where there are 

strong gradients) requires additional attention. For example, nonphysical 

solutions have been obtained for trailing edge turbulent airfoil flows 11-14 

A major factor contributing to inaccuracies is the artificial dissipation 

present in the numerical algorithms. 

The schemes that are used for solving the Euler and Navier-Stokes equa- 

tions are based on either central or upwind differencing. Both central and 

upwind methods include artificial dissipation. A symmetric form15 for the 

numerical flux function clearly reveals that upwind schemes involve a matrix 

dissipation coefficient. This results in a specific scaling (based on charac- 

teristic values) of the dissipation of each conservation equation. In the 

case of central difference schemes, a scalar coefficient is employed for the 

dissipative flux contribution to the numerical flux. This results in a 

simpler scheme with a smaller operations count. For either type of dif- 

ferencing, the principal requirements in the design of the dissipative terms 

are that they must be large enough for a satisfactory convergence rate and yet 

sufficiently small that accuracy is not compromised. 

In this paper, a central differencing algorithm is used to investigate 

artificial dissipation. There are two fundamental reasons for adding dissipa- 

tion terms to a central difference method. First, they are included to pro- 
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vide high frequency damping. It is well-known that central difference schemes 

experience odd and even point decoupling for both linear and nonlinear prob- 

lems. These high frequency modes must be damped to achieve satisfactory 

convergence. In the case of nonlinear problems, high frequency damping is 

required to remove the energy produced by nonlinear interactions (i.e., con- 

sider a Fourier representation of nonlinear convection terms). Without such 

damping, the unresolvable modes (subgrid frequency components) can appear as 

errors in the resolvable low frequency components of the discrete solution. 

Second, artificial dissipation terms are added to eliminate oscillations in 

the neighborhood of shock waves. Also,  from the mathematical theory for 

hyperbolic systems of inviscid conservation laws16, the introduction OF 

artificial dissipation is necessary to guarantee a unique weak solution. 

It is interesting to note that if sufficient resolution were used to 

define a shock structure, the solution of the full Navier-Stokes equations 

would eliminate the need for artificial dissipation at shock waves How- 

ever, this would mean that the mesh spacing in the streamwise direction in the 

vicinity of the shock would have to be orders of magnitude (depending on the 

Reynolds number) smaller than that which is currently used in aerodynamic 

computations. Furthermore, solving the complete Navier-Stokes equations 

rather than a subset such as the thin-layer Navier-Stokes equations (where 

diffusion terms in the streamwise-like direction are neglected) could require 

much greater computer time. 

17 

In the present work, the artificial dissipation model introduced by 

Jameson, Schmidt, and Turkel18 is reviewed. Then, some modifications of this 

model and boundary treatment of the dissipative terms are discussed. Numeri- 

cal methods used to solve the Euler and thin-layer Navier-Stokes equations are 



briefly described. Next, inviscid, laminar, and turbulent airfoil flows are 

considered to investigate the effects of certain modifications of the basic 

dissipation model on efficiency and accuracy. Special emphasis is given to 

the calculation of accurate viscous flow solutions. 

11. BASIC 9ISSIPATION MODEL 

The basic dissipation model considered in this paper was first introduced 

by Jameson, Schmidt and Turkel18 in conjunction with Runge-Kutta explicit 

schemes. It has subsequently been used by many investigators 19-23 in a wide 

range of applications. Also, it has been applied to AD1 implicit schemes 24 . 
In this section, this model will be briefly reviewed. 

Consider the Euler equations in the form 

Wt + f, + gy = 0 

where W is the solution vector of conserved variables, and 

inviscid flux vectors. The independent variables are time t 

f, g are the 

and Cartesian 

coordinates (x,y). Transforming Eq. (1) to arbitrary curvilinear coordi- 

nates 5 = t;(x,y), rl = rl(x,y) 

where J is the transformation Jacobian and F = fyn - gxn, G = gx - fy5. 
In a cell centered finite-volume method, Eq. (2 )  is simply integrated over an 

elemental volume in the discretized computational domain, and J is then the 

5 
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volume of the cell. Eq. (2) can also be written as 

Wt + AW + BW = 0 
5 n 

where A and B are the flux Jacobian matrices. 

A typical step of a Runge-Kutta approximation to Eq. (2) is 

where D5, Dn are approximations to the spatial derivatives, and D are 

artificial dissipation terms, which are usually frozen at the first or second 

stage. The artificial dissipation employed in Ref. 18 is a blending of second 

and fourth differences. That is, 

2 2  4 4  D = (De + Dn - D - Dn)W 5 
where 

(5) 

are forward and backward difference operators associated with vc and 

the 5 direction. The variable scaling factor 

where X is the largest eigenvalue of the matrix A ,  and is the 5 



l a r g e s t  e igenvalue of t h e  ma t r ix  B. The c o e f f i c i e n t s  E ( 2 )  and E: ( 4 )  

are adapted t o  t h e  flow and are def ined as fol lows:  

= V 
9' 

' i+l,j - 2pi, j  + 'i-1,j 

'i+l, j + "i,j + 'i-1,j ' 

(4)  ( 2 )  ) ] ,  
i + 1 / 2 , j  = max [0 ,  (K - E (4) 

i + 1 / 2 , j  E 

where P is t h e  p re s su re ,  and t y p i c a l  va lues  of t h e  c o n s t a n t s  K ( 2 )  and 

K(4) are 1/4 and 1/256, r e s p e c t i v e l y .  The o p e r a t o r s  i n  Eq. (5)  f o r  t h e  

11 d i r e c t i o n  are de f ined  i n  a s imilar  manner. 

Before proceeding, some gene ra l  comments on t h e  form of t h e s e  terms are 

appropr i a t e .  F i r s t ,  t h e  o r i g i n a l  use of t h i s  a r t i f i c i a l  d i s s i p a t i o n  w a s  f o r  

t h e  s o l u t i o n  of t h e  Eu le r  equa t ions  on a g r i d  wi th  an a spec t  r a t i o  c l o s e  t o  

one. Second, t h e  s c a l i n g  f a c t o r  A ,  which is  given i n  Eq. (81, has an iso- 

t r o p i c  behavior. Such a behavior is  gene ra l ly  not s a t i s f a c t o r y  i n  v i scous  

flow c a l c u l a t i o n s .  Also, t h e  eigenvalues  

Ag = Iuyn - vx 
11 

= I=, - UYg 
5 5 

where u,  v are Car t e s i an  v e l o c i t y  components and c is t h e  speed of sound, 

r e p r e s e n t  approximations t o  t h e  f l u x  Jacobian matrices A and B. (See R e f s .  

15 and 24 f o r  t h e  r e l a t i o n s h i p  between c e n t r a l  d i f f e r e n c i n g  p l u s  a r t i f i c i a l  
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dissipation and upwind differencing.) Finally, in more recent versions of the 

dissipation model, the maximum in Eq. (9 )  is taken over more mesh cells than 

the immediate neighbors. This is beneficial for shock capturing capability. 

111. MODIFICATIONS OF BASIC DISSIPATION MODEL 

The second difference dissipation term given in Eq. ( 6 )  is an approxima- 

tion to 

where 

of Eq. (2), multiplying the resulting equation by 

domain (Q) gives 

f3(2)  = X E ( ~ ) .  Adding this expression to the right-hand side (RHS) 

W, and integrating over the 

a 
1 /2  - I I W2 Jdedrl = flux terms 

at n 

if boundary terms are neglected or if boundary derivatives vanish. For linear 

problems, the square of the L2 norm I I W2 Jdcdrl (which in this case 

is an energy estimate in the mathematical sense) is a good measure for the 

stability of the numerical scheme. Equation (13)  shows that the second dif- 

ference dissipation term decreases this norm and, thus, is strictly dis- 

sipative. If the same type of analysis is done for the fourth difference 

dissipation term of Eq. (7), then 

n 

L2 
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1 / 2  a [ I W2 JdSdrl = f l u x  terms 
a t  n 

2 2  
( 4 )  a w - [ / B (7) d5dn 

n a5 

2 (as) 7 d5dn. 
n a5 a5 

a d 4 )  a w  a w - I /  - 

Both a d i s s i p a t i v e  term and a d i spe r s ive  term appear on t h e  RHS of Eq. (14).  

The fo l lowing  term 

V A W i , j  (15) 4 ( 4 )  
5 5 5  5 5  D W =: (V A ( X i , j  

i s  considered as a replacement f o r  t h e  one i n  Eq. (7) .  This  modified term 

produces only d i s s i p a t i v e  terms. Note t h a t  X and E ( 4 )  are eva lua ted  

a t  nodes r a t h e r  than  a t  mesh c e l l  boundaries as i n  Eq. (7 ) .  

For  Navier-Stokes problems, a f i n e  mesh i s  requi red  i n  t h e  d i r e c t i o n  

normal t o  t h e  body i n  o rde r  t o  r e so lve  the boundary l aye r .  I n  t h e  i n t e r e s t  of 

computat ional  e f f i c i e n c y ,  t h e  mesh spacing i n  t h e  streamwise d i r e c t i o n  f o r  

h igh  Reynolds number c a l c u l a t i o n s  is gene ra l ly  chosen s o  as t o  r e so lve  t h e  

streamwise i n v i s c i d  terms only (i.e., th in- layer  Navier-Stokes assumption).  

Then the mesh i n  t h e  viscous reg ion  has a h igh  a spec t  r a t i o  (wi th  S as arc 

I l e n g t h  ASn/AS5 << 1). To make matters  more d i f f i c u l t ,  t h e  s i t u a t i o n  can be 

reversed  i n  t h e  f a r  f i e l d  of an  e x t e r n a l  f low problem. Thus, depending on the 

g r i d  gene ra t ion  technique AS /AS5 = o(1) o r  even ASn/AS5 >> 1 i n  t h e  

f a r - f i e l d  region. These l a r g e  d i s t o r t i o n s  create d i f f i c u l t i e s  both € o r  t h e  

convergence and f o r  t h e  accuracy of s t eady- s t a t e  computations. These 

d i f f i c u l t i e s  are compounded f o r  mul t igr id  schemes s i n c e  h igh  frequency modes 

are very d i f f e r e n t  i n  t h e  two coord ina te  d i r e c t i o n s .  

n 
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A number of investigators have suggested that an anisotropic dissipation 

model is needed for such problems. Therefore, Eq. (8) in the basic dissipa- 

tion model is replaced by 

and a similar equation is used in the TI direction. For a multigrid 

algorithm, this scaling in the streamwise direction can be too severe. More- 

over, the effectiveness of the driving scheme in damping high frequencies in 

the E direction can be significantly diminished, resulting in a much 

slower convergence rate. In R e f .  25, Martinelli introduces functions of mesh 

cell aspect ratio and obtains accurate solutions and good convergence rates. 

For example, one can replace Eq. (16) by 

where 

O < a < l ,  a 
+i,j(r) = 1 + ri ,j 

and r = h /A In the normal direction, one defines 
TI 5 .  

This is only one possible function, and it should not be considered the 

optimum . 

L 



Due to large velocity gradients in turbulent boundary layers, additional 

scaling of the artificial dissipation is required in the direction normal to a 

surface boundary. The presence of the physical viscous terms can be exploited 

to allow the additional dissipation terms in the normal direction to be 

reduced. In the present work, this is accomplished by multiplying the second 

and fourth difference dissipation terms by a simple linear function of the 

local Mach number. That is, the normal scaling factor becomes 

where % = %/Moo and % is the local Mach number. 

IV. BOUNDARY TREATMENT OF DISSIPATION TERMS 

In this section, the boundary dissipation operators that are applied in 

many flow prediction codes based on finite-volume discretization are pre- 

sented. Then, a local mode analysis is used to examine the relative damping 

characteristics of some of the difference stencils. The influence of the 

boundary cell operators on the character of the dissipation matrix for the 

system of flow difference equations is also discussed. 

In a finite-volume method, the first and last cells in each coordinate 

direction are auxiliary cells where the flow equations are not solved. The 

solution in these cells is found by a combination of the given physical 

boundary conditions and numerical boundary conditions (i.e., extrapolation). 

Hence, there is generally no difficulty in evaluating the second difference 

dissipation term at the first or last interior cell in a given coordinate 
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direction. Note that at a solid surface boundary either the surface or entire 

contribution to the normal-like dissipation of the first interior cell is 

usually set to zero. In the case of the fourth difference dissipation term, 

information is required at two neighboring cells on each side of the cell 

being considered. Therefore, special treatment of this term is needed for the 

first interior cell at the boundaries of the physical domain. Eriksson and 

Rizzi26 and P ~ l l i a m ~ ~  suggest choosing a boundary cell difference stencil that 

results in a nonpositive definite dissipation matrix for the system of dif- 

ference equations. A s  will be shown, such a choice results in a numerical 

scheme that is more dissipative €or the long wavelength components of the 

solution at a boundary than in the €nterior of the domain. Although this may 

be acceptable at a far-field boundary of an external flow problem, caution 

should be exercised in selecting the difference formula at a solid boundary. 

For example, in Euler calculations a large dissipation in the direction normal 

to the boundary can generate a thick false entropy layer. A l s o ,  as indicated 

previously, it can alter a viscous flow solution significantly. 

At this point some simplifying notation is introduced to identify and 

subsequently analyze some of the boundary cell treatments that are commonly 

used for the fourth-difference dissipation. First, let D, 3, F, and 

denote first, second, third, and fourth differences, respectively. Then, for 

interior cells in a given direction 

- 

- - - - 2w + wP. Ea - De+1/2 - Da-1/2 = WQ+1 
- - P. 
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1 

is the discrete solution for the Rth cell. The dissipation 

stencils considered for the first interior cell (designated R = 2)  are 
"R i where 

~ I generated by applying the following (see Fig. (1)): 

I - - 
(zeroth order extrapolation) or (Al) ElI2 = D 

(A21 E1/2 = 2E3l2 - D5/2 (first order extrapolation) or El = E2. . 
(A31 

(A41 

El = 0. 3 /2 - - - 
- - - - 

B1/2 = D3/2 + 55/2 - D7/2 or El = E3. 
- 

(quadratic interpolation) or 
= 3(53/2 - D5/2) + '7/2 - - - 

Then, E = 0. = 'F5/2 + '5/2 - D3/2* 2 

In the case of a solid surface boundary (R = 3/2), the normal difference 

I operators that are generally used are constructed by setting the surface dis- 
- 

to zero and 3/2 I sipative flux F 

(B3) F5/2 = 0 ,  F3 = 0 

interior cells). 

(numerical dissipation of zero for first two 

The treatment of (B3) has been applied successfully in both inviscid and 

viscous multidimensional flow calculations. 11,23 
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A local mode analysis can be beneficial in examining the relative damping 

behavior of boundary cell difference operators. First, for comparison 

purposes, we characterize the interior fourth difference. Taking the Fourier 

transform of GR we obtain 
- 

2 
= ~(cos~-I) 

- 
is the Fourier symbol and e is the product of a wave number gR where 

and the mesh spacing. Then, 

- - e4 for small e gR 
and 

- 
The dissipation of long waves is dictated by the behavior of 

8, and the dissipation of short waves is governed by gg(m). The 

coefficient K c 4 )  (see Eq. (11)) is chosen so that the highest frequency is 

highly damped. This is important for multigrid calculations. Near a 

boundary, the dissipation should behave in a similar manner. 

gR at small 
- 

A general form of the difference stencil at R = 2 and the associated 

Fourier transform symbol can be written as follows: 

- 
GQ = aW - f3WR+l + ( B  + Y - a)WR - YwR,l R = 2  R+2 

and 
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+ i ( y  - 6 + 2a c o s e ) s i n e ,  

- = (6 + y  - 4 a ) - + a -  e 2  e 4  
ga 2 2 

+ i ( 2 a  - 0 + y)e - iae3  f o r  small e 

- 
R p )  = 2(8 +VI. 

In t h e  case of ( A l )  

- 
Ga = wa+2 - 4wa+1 + 5wg - 2wa,1 

- 
ga = e 2  - i e  f o r  small e ,  

- 
g,(n) = 12. 

a = 2,  

- 
i s  not  real; and thus,  t h e r e  is both d i s s i p a t i o n  and Note t h a t  

d i s p e r s i o n  nea r  t h e  boundary. This  is  t h e  d i s s i p a t i o n  recommended by 

P ~ l l i a r n ~ ~ .  It is second o rde r  on long waves and f a i r l y  d i s s i p a t i v e  on s h o r t  

waves. The t reatment  of (A2) g i v e s  

ga 

- + 3wa - w G~ - wa+2 - 3wa+1 a = 2, - 
R-1 
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For a l l  waves, t he  Real (i,) i s  h a l f  of t h e  i n t e r i o r  value.  The d i s s i -  

p a t i o n  formula f o r  (A3) i s  simply twice t h a t  of (A2). Then, t h e  real  p a r t  

of f o r  a l l  waves becomes t h e  same as it is  i n  t h e  i n t e r i o r  of t h e  do- 

main. I n  numerical  experiments ,  t h e  boundary c e l l  t r ea tmen t s  of (Al)  - (A4) 

r e s u l t e d  i n  similar s o l u t i o n s  and convergence rates. 

- 
g& 

I n  Ref. 24, boundary d i f f e r e n c e  s t e n c i l s  are eva lua ted  by computing t h e  

eigenvalues  of the d i s s i p a t i o n  mat r ix  f o r  a one-dimensional d i s c r e t e  system 

t h a t  includes a f o u r t h  d i f f e r e n c e  d i s s i p a t i o n  term. Such an e v a l u a t i o n  shows 

t h a t  t h e  damping of t h e  h ighes t  frequency ( a s  determined by t h e  l a r g e s t  eigen- 

value,  s ay  Xmax ) by boundary t r ea tmen t s  (Al) - (A3) is nea r ly  t h e  same. 

Note t h a t  as the  number of mesh po in t s  i n c r e a s e s ,  t h e  e igenvalue  X i s  max - 
d i c t a t e d  by t he  i n t e r i o r  po in t  s t e n c i l  ( f o r  t h e  i n t e r i o r  g,(n) = 16).  The 

p r i n c i p a l  d i f f e rence  between us ing  (Al) o r  (A2) - (A31 is  i n d i c a t e d  by t h e  low 

frequency behavior of t h e  d i s s i p a t i o n  matrix ( s e e  a l s o  

e ) .  The matrix a s soc ia t ed  wi th  (A2) o r  (A3) has  a zero  eigenvalue.  There- 

f o r e ,  (A2) o r  ( A 3 )  are not  recommended s i n c e  they could l ead  t o  undamped 

modes. According to  Refs. 26 and 24 a boundary d i s s i p a t i o n  formula i s  chosen 

s o  t h a t  the d i s s i p a t i o n  matrix i s  nonpos i t ive  d e f i n i t e  ( i . e . ,  s t r i c t l y  d i s s i -  

pa t ive ) .  The d i s s i p a t i o n  t rea tments  r e s u l t i n g  from (Al) and (Bl)  s a t i s f y  t h i s  

requirement. The r e s u l t s  of t h i s  paper were obtained wi th  ( A l )  and (Bl) .  

Moreover, the boundary t rea tment  and i n t e r i o r  r e p r e s e n t a t i o n  (Eq. (15 ) )  of t h e  

f o u r t h  d i f f e r e n c e  d i s s i p a t i o n  are c o n s i s t e n t  ( i . e . ,  s t r i c t l y  d i s s i p a t i v e ) .  

- 
g&(B) f o r  small 



V- NIIMERICAL METHODS 

The numerical results presented in this paper were computed with multi- 

stage time stepping schemes. Details and properties of these schemes have 

been described previously . In some of the calculations, both four and five 
stage Runge-Kutta algorithms were used as drivers for a multigrid process. 

The multigrid technique is based on the work of J a m e ~ o n . ~ ~  In particular, a 

Full Approximation Storage (FAS) method28 and V-type cycle are employed. The 

grid transfer operators (i.e., restriction and prolongation operators) are the 

same ones used in the Jameson procedure. Several modifications of the 

original method have resulted in improved multigrid performance. First, the 

fourth difference dissipation term is computed with Eq. (15). The normal 

artificial dissipation near the wake line is treated by continuation rather 

than applying the same procedure used on the airfoil surface. All boundary 

information is updated after each stage and on all meshes in the multigrid 

process. Finally, on each level of refinement of a Full Multigrid (FMG) 

method, multiple iterations are performed on coarse grids. One iteration is 

done on the finest mesh, two Runge-Kutta cycles on the next mesh, and three 

Runge-Kutta cycles on all coarser meshes. In the viscous flow calculations, a 

convective coarse grid correction scheme is used. 29 Moreover, the viscous 

terms are evaluated only on the finest grid for a given level of refinement. 

For further discussion of the multigrid algorithm, see Ref. 30. 

11 

VI, RESULTS AND DISCUSSION 

Adequate consideration must be given to convergence as well as accuracy 

in designing an artificial dissipation model. This is especially true for a 
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multigrid technique. For example, good high frequency damping of the basic 

solver is the crucial requirement for constructing an efficient multigrid pro- 

cess. I n  the first part of this section, the effects of scaling of the 

numerical dissipation are investigated by considering multigrid calculations 

for inviscid and laminar flow over an airfoil. The last part deals with tran- 

sonic turbulent airfoil flow, and in particular, the trailing edge flow. To 

facilitate the discussion of the numerical results, the following designations 

are made to indicate the form of the artificial dissipation model used: 

1) Basic or original (see Section 11) 

2) Modified (Eq. (16))  - This refers to scaling with individual 

eigenvalues. 

3) Modified (Eq. (17))  - Individual eigenvalues are multiplied by a 

function of cell aspect ratio. 

For each model, Eq. (15) is used for the fourth difference dissipation term. 

Finally, wherever a convergence history is presented, it shows the variation 

of the logarithm of the root mean square of the residual of the continuity 

equation with iteration. For the multigrid computations, an iteration 

corresponds to a multigrid cycle. 

Transonic Inviscid Flow 

Several calculations were performed for an NACA 0012 airfoil at Mach 0.8 

and an angle of attack of 1.25'. A C-type mesh with 256 cells around the air- 

foil (193 points on the airfoil) and 32 cells normal to the airfoil was 

used. The outer boundary was placed 12 chords away from the airfoil; a far 
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field vortex boundary condition3' was applied. The computed surface pressure 

distributions and convergence histories using the basic and modified (Eq. 

(16)) artificial dissipation models are displayed in Figs. 2 and 3, respec- 

tively. The predicted shocks on the upper and lower surfaces of the airfoil 

are stronger as a result of reducing the numerical dissipation. However, the 

mean convergence rate with the multigrid method deteriorates substantially. 

It is .876 with the original model and -960 with the modified (Eq. (16)) 

model. If the modification of Eq. (17) is applied, the calculated pressure 

distribution (Fig. 4a) is very close to that given in Fig. 3. Furthermore, 

the mean convergence rate of the computation is improved significantly (a 

value of -890 for 100 cycles). It should be emphasized that the function 

employed in Eq. (17) for scaling the artificial dissipation is by no means 

optimum. The lift and drag coefficients for these cases and those predicted 

with the high density mesh calculations of Ref. 7 are given in Table I. 

Table I 

Lift and drag coefficients for NACA 0012 airfoil, M, = -8, a = 1.25' 

Case 

Basic dissipation model 

Modified (Eq. 16)) dissipation 
mode 1 

Modified (Eq. 17)) dissipation 
model 

Ref. 7 - 561 x 65 C-type mesh 

CL CD 

03330 

3667 

-3567 

03618 

00220 

-0235 

.0234 

.0236 
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Subsonic Laminar Flow 

Numerical s o l u t i o n s  were obtained f o r  laminar  flow p a s t  an  NACA 0012 a i r -  

f o i l .  The Mach number was 0.5, t h e  Reynolds number w a s  5000, and t h e  ang le  of 

a t t a c k  was zero  degrees.  A C-type mesh wi th  256 x 64 ce l l s  (129 p o i n t s  on 

t h e  a i r f o i l )  was employed i n  the  c a l c u l a t i o n s .  The normal mesh spac ing  a t  t h e  

s u r f a c e  was about 6 x chords,  and t h e  t r a i l i n g  edge streamwise spac ing  

w a s  5 x chords. I n  Figs.  5a and 5b, t h e  p re s su re  and s k i n - f r i c t i o n  

d i s t r i b u t i o n s  computed us ing  t h e  o r i g i n a l  d i s s i p a t i o n  model are shown. The 

absence of any p res su re  recovery a t  t h e  t r a i l i n g  edge i n d i c a t e s  t h e  presence  

of s t r o n g  viscous e f f e c t s .  Moreover, as denoted i n  Fig. 5b, t h e  flow 

s e p a r a t e s  a t  t h e  .811 chord loca t ion .  There is a sudden change i n  t h e  s k i n  

f r i c t i o n  a t  t h e  t r a i l i n g  edge. A t  least  i n  p a r t ,  t h i s  is  a consequence of t h e  

a r t i f i c i a l  d i s s i p a t i o n  model. The convergence h i s t o r y  f o r  t h i s  case is pre- 

s e n t e d  i n  Fig. 5c. I n  300 mul t ig r id  cyc le s  wi th  t h e  f i n e s t  g r i d  ( r e q u i r i n g  

less than 3 minutes on t h e  CRAY I1 computer), t h e  mean rate of convergence i s  

.923. 

The sur face  s k i n - f r i c t i o n  d i s t r i b u t i o n  c a l c u l a t e d  us ing  t h e  modified (Eq. 

(16) )  model is d isp layed  i n  Fig. 6a. Now, t h e r e  i s  a s i g n i f i c a n t l y  smaller 

dec rease  i n  t h e  s k i n  f r i c t i o n  a t  t h e  a i r f o i l  t r a i l i n g  edge. I n  t h e  case of 

t h e  modified (Eq. (17))  model, some a d d i t i o n a l  s c a l i n g  (with a s imple second 

degree  polynomial) i n  the streamwise d i r e c t i o n  i n  t h e  immediate v i c i n i t y  of 

t h e  t r a i l i n g  edge w a s  requi red  t o  o b t a i n  e s s e n t i a l l y  t h e  same s k i n - f r i c t i o n  

s o l u t i o n  and a good convergence rate. F igure  6b shows t h e  convergence 

h i s t o r i e s  fo r  t hese  cases. The mean rates of convergence us ing  t h e  modif ied 

models based on Eqs. (16) and (17) are .947 and ,932, r e spec t ive ly .  
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Nonphysical solutions for turbulent flow in the trailing edge region of 

an airfoil have been observed by many investigators. The basic factors that 

determine the accuracy of the trailing edge solution are as follows: 

I 

For all these laminar flow results the second difference dissipation 

terms are set to zero. In the shear layers, the normal physical viscous terms 

generally dominate (are an order of magnitude or more larger than) the 

numerical dissipation terms. However, even with the modified (Eq. (16))  

model, the streamwise artificial dissipation terms are not dominated by the 

normal physical ones for a few cells surrounding a trailing edge cell. For 

this laminar case, the streamwise diffusion terms, which were neglected by the 

thin-layer approximation, may be of sufficient importance to allow domination 

of the total physical viscous effects over the artificial ones at the trailing 

edge. 

The streamlines of the recirculation zone for the modified (Eq. (16))  

dissipation model solution are presented in Fig. 7. The longitudinal and 

lateral extents of this thin bubble are very close to those predicted with the 

other models. Figure 8 shows a velocity vector plot for this laminar flow 

problem. 

Transonic Turbulent Flow 

1) Mesh (resolution and orientation), 

2) artificial dissipation, 

3)  turbulence modelling. 
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In Ref. 33, Haase indicates that the principal reason for inaccurate results 

is the nonalignment of the trailing-edge mesh line and streamline. Based on 

the present work and Ref. 2, this is not considered to be the main cause of 

inaccuracy. That is, qualitatively correct physical behavior can be obtained, 

even if the trailing-edge mesh line bisects the trailing-edge angle, as long 

as the artificial dissipation is sufficiently small. 

The impact of the artificial dissipation terms is revealed in results for 

In this standard test case,33 the 

6.5 x lo6, and the 

transonic flow over an RAE 2822 airfoil. 

free-stream Mach number is 0.73, the Reynolds number is 

angle of attack corrected for wind-tunnel wall effects is 2.79 degrees. The 

first set of results was computed with the basic artificial dissipation model 

and a C-type mesh having 264 x 100 cells. A view of the mesh and a blowup 

of the trailing-edge region is shown in Fig. 9. The mesh spacing in the 

normal direction at the surface is such that the first mesh point is inside 

the laminar sublayer. The spacing in the x direction at the trailing edge 

) is 0.0147 chords. Figures 10a and 10b compare the pressure and 

Even though 
(Axt .e. 
upper surface skin-friction distributions with experimental data. 

there is an adverse pressure gradient on the upper surface near the trailing 

edge, the skin friction there exhibits a substantial rise, which is not 

physically correct. 

The next set of results was obtained with the basic dissipation model and 

a finer trailing-edge mesh. The mesh fo r  this case is presented in Fig. 11. 

The spacing Ax is 0.005 chords. This represents a reduction of almost toe. 

a factor of three. At the shock wave, the spacing is more than twice that for 

the previous results. In Figs. 12a and 12b, the pressure and skin-friction 

variations are displayed. There is still a strong skin friction rise at the 

airfoil trailing edge. 
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The f i n a l  group of r e s u l t s  w a s  ca l cu la t ed  using the  modified (Eq. (16 ) )  

d i s s i p a t i o n  model and t h e  mesh i n  Fig. 11. They are shown i n  Figs.  13a - 
13d. The p red ic t ed  p r e s s u r e s  a r e  i n  good agreement with experimental  d a t a ,  

even wi th  t h e  coa r se  g r i d  spacing i n  t h e  v i c i n i t y  of t h e  shock. A s  i n d i c a t e d  

i n  Fig. 13b, t h e r e  are two sepa ra t ed  flow regions on t h e  a i r f o i l .  A very 

small shock induced s e p a r a t i o n  bubble occurs a t  about 56% chord. The t r a i l i n g  

edge s e p a r a t i o n  on t h e  upper su r face  of t h e  a i r f o i l  occurs approximately a t  

95% chord. The behavior of t h e  flow i n  t h e  v i c i n i t y  of t he  t r a i l i n g  edge is 

c l e a r l y  v i s i b l e  i n  Fig. 13c. Figure 13d p r e s e n t s  t h e  r e s i d u a l  and l i f t  

h i s t o r i e s  f o r  t h e  c a l c u l a t i o n .  A mul t ig r id  procedure w a s  not employed. 

F i n a l l y ,  i n  Table 11 t h e  p red ic t ed  l i f t ,  drag,  and p i t c h i n g  moment 

c o e f f i c i e n t s  are compared wi th  those  of experiment and Ref. 3. 

TABLE I1 

L i f t ,  drag,  and p i t c h i n g  moment c o e f f i c i e n t s  f o r  RAE 2822 a i r f o i l ,  

M, = .73, Rep, = 6.5 x 10 , a = 2.79' 6 

cL 
P 

cD 

Experiment (Ref. 33) 0803 - 
P r e s e n t  (256 x 64 .829 -0124 
C-type mesh) 

Pu l l i am (Ref. 3, 248 x 51 -824 00128 
0-type mesh) 

CD - p r e s s u r e  drag c o e f f i c i e n t  

- f r i c t i o n  d rag  c o e f f i c i e n t  
P 

cDf 
CD CM 

- .oi6a -.099 

.oos 1 00175 -0093 

.0050 e0178 -.092 
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CONCLUDING REHARKS 

Improved accuracy of numerical flow solutions has been achieved by 

modifying a standard artificial dissipation model for central differencing 

schemes. With the eigenvalue scaling suggested by upwind differencing, the 

artificial dissipation in the streamwise flow direction has been reduced. 

This has resulted in a better representation of inviscid transonic flows on a 

given mesh. In addition, physically correct viscous solutions for the trail- 

ing edge of an airfoil flow have been obtained. However, the modified eigen- 

value scaling of the dissipation has resulted in slower convergence rates for 

a multigrid method driven by a multistage time stepping scheme. Improvements 

in accuracy and multigrid convergence rates have been shown possible by 

modifying the scaling with a function that depends on mesh cell aspect ratio. 
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Figure 1. Designation of mesh lines and solution points for boundary cell 
treatment of artificial dissipation. 



-2.0 

-1.5 

-1 .o 
cP 

-.5 

0 

.5 

1 .o 

1.5 - I I I I I 
0 .2 .4 .6 .8 1.0 

x/c 
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Figure 2. Calculation of inviscid flow over NACA 0012 airfoil using basic 
artificial dissipation model (Moo = 0.8, a = 1.25'). 



-28- 

2 

0 

-2 

-4 

-6 

-8 

- 1  0 

- 1  2 
0 50 100 150 200 250 

I ter a ti on s 

(b) Convergence history. 



cP 

-2.0 

-1.5 

-1 .o 

-.5 

0 

.5 

1 .o 

1.5 

-29- I 

...4 

X R 

- ) r  

X + 
X 

- 4  

0 .2 .4 .6 .8 1.0 

x/c 

( a )  Pressure distribution. 

Figure 3. Calculation of inviscid flow over NACA 0012 airfoil using modified 
(Eq. (16)) artificial dissipation model (Ma = 0.8, a = 1.25). 
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(b) Convergence h i s t o r y .  
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(a) Pressure distribution. 

Figure 4 .  Calculation of inviscid flow over NACA 0012 airfoil using moiified 
(Eq. (17)) artificial dissipation model (Moo = 0.8, a = 1-25  1 0  
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(a) Pressure distribution. 

Figure 5. Calculation of laminar flow over NACA 0012 a i r f o i l  using; basic 
a r t i f i c i a l  diss ipation model (MOD = 0 .8 ,  ReOD = 5000, a = 0 1- 
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F igure  6 .  Calcula t ions  of laminar  flow over  NACA 0012 a i r f o i l  us ing  modified 
a r t i f i c i a l  d i s s i p a t i o n  models (Mw = 0.5, Rew = 5000, a = O o ) .  
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Figure  7. P a r t i c l e  p a t h l i n e s  f o r  laminar  f low over  NACA 0012 a i r f o i l  
(MOD = 0.5, Reoo = 5000, a = 0 0 >. 
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Figure  8. Veloc i ty  v e c t o r s  f o r  laminaroflow over  NACA 0012 a i r f o i l  
<M, = 0.5, Re, = 5000, Q = 0 1. 
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Figure  9a. P a r t i a l  view of mesh ( 2 6 4  x 100 c e l l s )  f o r  RAE 2822 a i r f o i l .  
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Figure  9b. Blowup of mesh i n  t r a i l i n g  edge reg ion .  



-42- 

-2.5 

-2.0 

-1.5 

-1 .o 
cP 

-.5 

0 

.5 

1 .o 

1.5 

- 0 EXPERIMENT, COOK 
N AVIER-STOKE S 

- I I 1 I 1 
0 .2 .4 .6 .8 1 .o 

(a) Pressure distribution. 

Figure 10. Calculation of turbulent flow Over RAE 2822 airfoil with basic 
artificial dissipation model 
a = 2.79'). 

(M, = 0.73, Re, = 6.5 X 10 6 9 
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Figure  l l a .  P a r t i a l  view of mesh (256 x 64 cells) f o r  RAE 2822 a i r f o i l ;  mesh 
refinement a t  t r a i l i n g  edge. 
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Figure  l l b .  Blowup of mesh i n  t r a i l i n g  edge reg ion .  



-46- 

-2.5 

- 2 . 0 1  

-1.5 

cP 

EXPERIMENT, COOK 
- NAVIER-STOKES 

.1 .o 

-.5 

0 

.5 

1 .o 

1.5L 
0 .2 .4 .6 .8 1.0 

(a) Pressure distribution. 

Figure 12. Calculation of turbulent flow over RAE 2822 airfoil with basic 
artificial dissipation model ant mesh refinement at trailing 
edge 0 

(MOD = 0.73, Reoo = 6.5 x 10 , a = 2.79 ). 
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Figure 13. Calculation of turbulent flow over RAE 2822 airfoil with modified 
(Eq. 16)) artificial dissipation model yd mesh refinement at 
trailing edge (Ma = 0.73, Rem = 6.5 x 10 , a = 2.79O). , 

1 

i 

I I I I I 
0 .2 .4 .6 .8 1.0 

x/c 

(a) P r e s s u r e  d i s t r i b u t i o n .  



6 

5 

4 

c f 
3 

2 

1 

0 

-1 

’ L 0 EXPERIMENT, COOK 
- N AVIER-STOKES 

- \ 
.2 .4* .6 .8 1.0 0 

(b) Upper s u r f a c e  s k i n - f r i c t i o n  
d i s t r i b u t i o n .  



- 50- 

( c )  Veloc i ty  v e c t o r s  a t  t r a i l i n g  edge. 
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